Minimalflächengleichung

Minimalflächengleichung
(f)
уравнение минимальных поверхностей

Немецко-русский математический словарь. 2013.

Игры ⚽ Поможем написать реферат

Смотреть что такое "Minimalflächengleichung" в других словарях:

  • Enneperfläche — Eine Minimalfläche ist eine Fläche im Raum, die lokal minimalen Flächeninhalt hat. Derartige Formen nehmen beispielsweise Seifenhäute an, sofern sie nicht wie im Fall von Blasen durch eingeschlossene Luft aufgebläht werden. In mathematischer… …   Deutsch Wikipedia

  • Helicoid — Eine Minimalfläche ist eine Fläche im Raum, die lokal minimalen Flächeninhalt hat. Derartige Formen nehmen beispielsweise Seifenhäute an, sofern sie nicht wie im Fall von Blasen durch eingeschlossene Luft aufgebläht werden. In mathematischer… …   Deutsch Wikipedia

  • Minimalfläche — Eine Minimalfläche ist eine Fläche im Raum, die lokal minimalen Flächeninhalt hat. Derartige Formen nehmen beispielsweise Seifenhäute an, wenn sie über einen entsprechenden Rahmen (wie etwa einem Blasring) gespannt sind. In mathematischer Sprache …   Deutsch Wikipedia

  • Scherkfläche — Eine Minimalfläche ist eine Fläche im Raum, die lokal minimalen Flächeninhalt hat. Derartige Formen nehmen beispielsweise Seifenhäute an, sofern sie nicht wie im Fall von Blasen durch eingeschlossene Luft aufgebläht werden. In mathematischer… …   Deutsch Wikipedia

  • Wendelfläche — Eine Minimalfläche ist eine Fläche im Raum, die lokal minimalen Flächeninhalt hat. Derartige Formen nehmen beispielsweise Seifenhäute an, sofern sie nicht wie im Fall von Blasen durch eingeschlossene Luft aufgebläht werden. In mathematischer… …   Deutsch Wikipedia

  • Schoen-Yau conjecture — In mathematics, the Schoen Yau conjecture is a disproved conjecture in hyperbolic geometry, named after the mathematicians Richard Schoen and Shing Tung Yau.It was inspired by a theorem of Erhard Heinz (1952). One method of disproof is the use of …   Wikipedia


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»